A Characterization of Minimal Locally Finite Varieties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Minimal Locally Finite Varieties

In this paper we describe a one–variable Mal′cev–like condition satisfied by any locally finite minimal variety. We prove that a locally finite variety is minimal if and only if it satisfies this Mal′cev–like condition and it is generated by a strictly simple algebra which is nonabelian or has a trivial subalgebra. Our arguments show that the strictly simple generator of a minimal locally finit...

متن کامل

A Characterization of Decidable Locally Finite Varieties

We describe the structure of those locally finite varieties whose first order theory is decidable. A variety is a class of universal algebras defined by a set of equations. Such a class is said to be locally finite if every finitely generated member of the class is finite. It turns out that in order for such a variety to have a decidable theory it must decompose into the varietal product of thr...

متن کامل

Congruence semimodular varieties I: Locally finite varieties

The lattice of closed subsets of a set under such a closure operator is semimodular. Perhaps the best known example of a closure operator satisfying the exchange principle is the closure operator on a vector space W where for X ___ W we let C(X) equal the span of X. The lattice of C-closed subsets of W is isomorphic to Con(W) in a natural way; indeed, if Y _~ W x W and Cg(Y) denotes the congrue...

متن کامل

Locally finite varieties of Heyting algebras

We show that for a variety V of Heyting algebras the following conditions are equivalent: (1) V is locally finite; (2) the V-coproduct of any two finite V-algebras is finite; (3) either V coincides with the variety of Boolean algebras or finite V-copowers of the three element chain 3 ∈ V are finite. We also show that a variety V of Heyting algebras is generated by its finite members if, and onl...

متن کامل

Finiteness Properties of Locally Finite Abelian Varieties

We show that any locally finite abelian variety is generated by a finite algebra. We solve a problem posed by D. Hobby and R. McKenzie by exhibiting a nonfinitely based finite abelian algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1997

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-97-01883-7